28 results match your criteria: "ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials[Affiliation]"

Analysis of the Influence of Different Diameters of De Laval Supersonic Nozzles on the Key Splashing Parameters of Remaining Slag.

Materials (Basel)

November 2024

Department of Machine Parts and Mechanism, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská Str. 2, 46117 Liberec, Czech Republic.

The paper is devoted to the analysis of a supersonic nozzle system effect in gas-cooled lances on the technological parameters of slag splashing in an oxygen converter. Simulation calculations were carried out, taking into account the parameters of nozzles used in the technological lines of converter steel plants in Ukraine and Brazil. The problems were solved in several stages.

View Article and Find Full Text PDF

Soil conditioners to fertilize, improve soil structure and support the phytostabilization of trace metal elements (TMEs) are being used more and more frequently. One of the options are agrosinters - slow-release ceramic fertilizers consisting mainly of SiO, CaO, PO and KO, with an alkaline pH and high impact strength. The effect of two different agrosinters, A1 and A2, on the growth and physiological condition of Brassica napus grown in uncontaminated and Pb-, Cd- and Zn-contaminated soil was investigated in a pot experiment.

View Article and Find Full Text PDF

To functionalize the NiTi alloy, multifunctional innovative nanocoatings of Ag-TiO and Ag-TiO doped with hydroxyapatite were engineered on its surface. The coatings were thoroughly characterized, focusing on surface topography and key functional properties, including adhesion, surface wettability, biocompatibility, antibacterial activity, and corrosion resistance. The electrochemical corrosion kinetics in a simulated body fluid and the mechanisms were analyzed.

View Article and Find Full Text PDF

The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min.

View Article and Find Full Text PDF

Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems.

ACS Biomater Sci Eng

September 2023

Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland.

Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually.

View Article and Find Full Text PDF

Chitosan is one of the most commonly employed natural polymers for biomedical applications. However, in order to obtain stable chitosan biomaterials with appropriate strength properties, it is necessary to subject it to crosslinking or stabilization. Composites based on chitosan and bioglass were prepared using the lyophilization method.

View Article and Find Full Text PDF

This paper discusses the impact of coal abrasive materials of varied petrographic composition and claystones containing admixtures of coal matter on the surface wear of wear-resistant martensitic steels. Wear tests were conducted at a test stand for three petrographic varieties of hard coal: vitrinite, clarinite, and durinite, and five samples of claystone. These tests revealed no significant effect of the type of coal abrasive used on the value of mass loss from the surface of the wear-resistant steel samples.

View Article and Find Full Text PDF

Functionalization of the Implant Surface Made of NiTi Shape Memory Alloy.

Materials (Basel)

February 2023

Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.

To functionalize and improve the biocompatibility of the surface of a medical implant made of NiTi shape memory alloy and used in practice, a clamp, multifunctional layers composed of amorphous TiO interlayer, and a hydroxyapatite coating were produced. Electrophoresis, as an efficient method of surface modification, resulted in the formation of a uniform coating under a voltage of 60 V and deposition time of 30 s over the entire volume of the implant. The applied heat treatment (800 °C/2 h) let toa dense, crack-free, well-adhered HAp coating with a thickness of ca.

View Article and Find Full Text PDF

Synthetic implants are used to treat large bone defects that are often unable to regenerate, for example those caused by osteoporosis. It is necessary that the materials used to manufacture them are biocompatible and resorbable. Polymer-ceramic composites, such as those based on poly(L-lactide) (PLLA) and calcium phosphate ceramics (Ca-P), are often used for these purposes.

View Article and Find Full Text PDF

Background: Cytotoxicity testing is a primary method to establish the safety of biomaterials, e.g., biocomposites.

View Article and Find Full Text PDF

Increasing incidents of oil spills and dynamic development of civilization are driving the demand for sorbents. The production of the overwhelming majority of mineral sorbents involves the highly energy-consuming calcination process with CO emissions impacting the environment. Taking into account the environmental issues related to greenhouse gas emissions, we are in urgent need of green products and green technologies.

View Article and Find Full Text PDF

Composites based on polylactide (PLA) and hydroxyapatite (HA) were prepared using a thermally induced phase separation method. In the experimental design, the PLA with low weight-average molar mass () and high were tested with the inclusion of HA synthesized as whiskers or hexagonal rods. In addition, the structure of HA whiskers was doped with Zn, whereas hexagonal rods were mixed with Sr salt.

View Article and Find Full Text PDF

The article presents the results of studies on cytotoxicity and antibacterial activity of new MTA-type cements, developed on the basis of the sintered tricalcium silicate enriched with ZnO, along with an agent introducing the radiopacity in the form of ZrO. The new materials have been developed to ensure that their physical and chemical properties are suited for endodontic applications. The cements were evaluated via characterisation of setting time, compressive strength, as well as translucency on X-ray images, and bioactivity in the simulated body fluid (SBF).

View Article and Find Full Text PDF

Assessing the toxicity of new biomaterials dedicated to bone regeneration can be difficult. Many reports focus only on a single toxicity parameter, which may be insufficient for a detailed evaluation of the new material. Moreover, published data frequently do not include control cells exposed to the environment without composite or its extract.

View Article and Find Full Text PDF

In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out.

View Article and Find Full Text PDF

Due to the high cost of experiments commonly performed to verify the resistance of glass elements to impact loads, numerical models are used as an alternative to physical testing. In these, accurate material parameters are crucial for a realistic prediction of the behaviour of glass panels subjected to impact loads. This applies in particular to the glass's strength, which is strictly dependent on the strain rate.

View Article and Find Full Text PDF

Evaluation of Fine and Ultrafine Particles Proportion in Airborne Dust in an Industrial Area.

Int J Environ Res Public Health

August 2021

Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic.

The health impacts of suspended particulate matter (SPM) are significantly associated with size-the smaller the aerosol particles, the stronger the biological effect. Quantitative evaluation of fine and ultrafine particles (FP and UFP) is, therefore, an integral part of ongoing epidemiological studies. The mass concentrations of SPM fractions (especially PM, PM, PM) were measured in an industrial area using cascade personal samplers and a gravimetric method, and their mass ratio was determined.

View Article and Find Full Text PDF

This work focuses on research on obtaining and characterizing AlO/ZrO materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of AlO/ZrO composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics.

View Article and Find Full Text PDF

Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed foam scaffolds using poly(l-lactide) (PLLA) and apatite whiskers (HAP) through a thermally induced phase separation method supported by salt leaching to create various pore sizes.
  • They investigated the internal structure and physical properties of the scaffolds through techniques like SEM and μCT, with particular success noted in the scaffolds made with larger salt sizes (500-600 μm) and l-lysine modification.
  • The study found that these larger pore scaffolds enhanced osteoblast cell adhesion and proliferation, significantly improving calcium deposit formation compared to smaller pore scaffolds.
View Article and Find Full Text PDF

This paper presents the results of the analysis of the chemical composition and content of heavy metal contamination in forest logging residues, in order to assess the possibility for their further utilisation. The samples were divided into 9 groups, which included coniferous tree cones, wood, and other multi-species logging residues. The elementary composition, ash content, and calorific value were determined as energy use indicators for the samples.

View Article and Find Full Text PDF

Recent years have seen the dynamic development of methods for functionalizing the surface of implants using biomaterials that can mimic the physical and mechanical nature of native tissue, prevent the formation of bacterial biofilm, promote osteoconduction, and have the ability to sustain cell proliferation. One of the concepts for achieving this goal, which is presented in this work, is to functionalize the surface of NiTi shape memory alloy by an atypical glass-like nanocomposite that consists of SiO-TiO with silver nanoparticles. However, determining the potential medical uses of bio(nano)coating prepared in this way requires an analysis of its surface roughness, tribology, or wettability, especially in the context of the commonly used reference coat-forming hydroxyapatite (HAp).

View Article and Find Full Text PDF

In recent years, more and more emphasis has been placed on the development and functionalization of metallic substrates for medical applications to improve their properties and increase their applicability. Today, there are many different types of approaches and materials that are used for this purpose. Our idea was based on a combination of a chemically synthesized Ag-SiO nanocomposite and the electrophoretic deposition approach on a NiTi-shape memory substrate.

View Article and Find Full Text PDF

To solve the problem of human diseases caused by a combination of genetic and environmental factors or by microorganisms, intense research to find completely new materials is required. One of the promising systems in this area is the silver-silica nanocomposites and their derivatives. Hence, silver and silver oxide nanoparticles that were homogeneously distributed within a silica carrier were fabricated.

View Article and Find Full Text PDF