1,108 results match your criteria: "'Petru Poni' Institute of Macromolecular Chemistry[Affiliation]"

Silica-Based Composite Sorbents for Heavy Metal Ions Removal from Aqueous Solutions.

Polymers (Basel)

October 2024

Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania.

Weak polyelectrolyte chains are versatile polymeric materials due to the large number of functional groups that can be used in different environmental applications. Herein, one weak polycation (polyethyleneimine, PEI) and two polyanions (poly(acrylic acid), PAA, and poly(sodium methacrylate), PMAA) were directly deposited through precipitation of an inter-polyelectrolyte coacervate onto the silica surface (IS), followed by glutaraldehyde (GA) crosslinking and extraction of polyanions chains. Four core-shell composites based on silica were synthesized and tested for adsorption of lead (Pb) and nickel (Ni) as model pollutants in batch sorption experiments on the laboratory scale.

View Article and Find Full Text PDF

Synthesis and Mass Spectrometry Structural Assessment of Polyesteramides Based on ε-Caprolactone and L-Phenylalanine.

Polymers (Basel)

October 2024

Polish-Romanian Laboratory ADVAPOL, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland.

L-Phenylalanine-ε-caprolactone-based polyesteramides (PCPs) were synthesized via melt polycondensation across a diverse range of molar compositions. The copolymer structure was extensively characterized using nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). NMR analysis confirmed the intercalation of the L-Phenylalanine comonomer units within the polyester backbone.

View Article and Find Full Text PDF

A Coarse-Grained Molecular Dynamics Perspective on the Release of 5-Fluorouracil from Liposomes.

Mol Pharm

December 2024

Department of Bioinformatics, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Street, Iaşi 700483, Romania.

Liposomes, small bilayer phospholipid-containing vesicles, are frequently used to ensure slow drug release for a prolonged and improved therapeutic effect. Nevertheless, current findings on the membrane affinity and permeability of the anticancer agent 5-fluorouracil (5-FU) are confounding, which leads to a lack of a clear understanding of how lipid composition impacts the distribution of 5-FU within liposomal structures and its delivery. In the current work, we report a comprehensive coarse-grained molecular dynamics (CGMD) investigation on the influence of cholesterol (CHOL) and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) on the partitioning of 5-FU in 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) double-bilayer systems, as well as its in vitro release from liposomes with identical lipid compositions.

View Article and Find Full Text PDF

Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their intended use, requiring alternative treatment and valorisation methods. Thermal treatment as a procedure for the conversion of seed cakes from walnuts, hemp, pumpkin, flax, and sunflower into valuable products or energy has been investigated in this paper.

View Article and Find Full Text PDF

Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements.

View Article and Find Full Text PDF

Understanding the intricate interactions of molecular dyes with nucleic acids is pivotal for advancing medical and biochemical applications. In this work, we present a comprehensive study of the interplay between a novel series of bis-acridine orange (BAO) dyes and double-stranded DNA (dsDNA). These BAO dyes were intentionally designed as two acridine orange units connected by neutral linkers featuring a 2,5-disubstituted thiophene moiety.

View Article and Find Full Text PDF

Porous hydrogels have brought more advantages than conventional hydrogels when used as chromatographic materials, controlled release vehicles for drugs and proteins, matrices for immobilization or separation of molecules and cells, or as scaffolds in tissue engineering. Polysaccharide-based porous hydrogels, in particular, can address challenges related to bioavailability, solubility, stability, and targeted delivery of natural antioxidant compounds. Their porous structure enables the facile encapsulation and controlled release of these compounds, enhancing their therapeutic effectiveness.

View Article and Find Full Text PDF

kidney transplant recipients are exposed to multiple pathogenic pathways that may alter short and long-term allograft survival. Metabolomic profiling is useful for detecting potential biomarkers of kidney disease with a predictive capacity. This field is still under development in kidney transplantation and metabolome analysis is faced with analytical challenges.

View Article and Find Full Text PDF

Binary and Ternary Inclusion Complexes of Niflumic Acid: Synthesis, Characterization, and Dissolution Profile.

Pharmaceutics

September 2024

Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria.

Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE.

View Article and Find Full Text PDF

Biogenic Synthesis of Silver Nanoparticles Mediated by and Their Biological Evaluation.

Life (Basel)

September 2024

Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.

In the present study, two berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated.

View Article and Find Full Text PDF

Polysaccharides have recently attracted growing attention as adsorbents for various pollutants, since they can be extracted from a variety of renewable sources at low cost. An interesting hydrophilic and biodegradable polysaccharide is dextran (Dx), which is well-known for its applications in the food industry and in medicine. To extend the application range of this biopolymer, in this study, we investigated the removal of crystal violet (CV) and methylene blue (MB) dyes from an aqueous solution by Dx-based cryogels using the batch technique.

View Article and Find Full Text PDF

A narrow-band green emitting KTb(PO) phosphor has been synthesized by a novel single-crystal growth approach involving the application of an inert flux. Its structural and spectroscopic peculiarities have been systematically studied by means of single-crystal X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, and diffuse reflectance, infrared and photoluminescence spectroscopy. The layered framework of the title compound is organized by linking together slightly distorted phosphate tetrahedra with non-condensed TbO polyhedra into [Tb(PO)] sheets interconnected by potassium cations.

View Article and Find Full Text PDF

Although deterioration of silicone maxillofacial prostheses is severely accentuated in smoking patients, the phenomenon has not been systematically studied. To address a gap in the literature concerning the stability of maxillofacial prostheses during service, in this contribution, the effect of cigarette smoke on the aspect and physical properties of M511 silicone elastomer was evaluated. The aspect, surface, and overall properties of the silicone material, pigmented or not, were followed by AFM, color measurements, FTIR, water contact angle measurements, TGA-DTG and DSC, hardness and compression stress-strain measurements.

View Article and Find Full Text PDF

The present study was focused on the preparation, characterization and application onto cotton fabrics of different topical oil-in-water emulsions based on chitosan, eugenol and copaiba essential oil for potential topical applications. Different amounts of copaiba essential oil (oil phases) and eugenol were used, while the water phase consisted of hamamelis water. The designed formulations were evaluated via optical microscopy and rheological parameters assessment.

View Article and Find Full Text PDF

This paper investigates the effects of ultrasonication on cellulose microparticles in different conditions. FTIR (Fourier transformed infrared spectrometry) and XRD (X-ray diffraction) analyses were used to compare the changes in the cellulose microstructure caused by the following various ultrasonic treatment conditions: time, amplitude of generated ultrasound waves, output power converted into ultrasound, the liquid medium (water and isopropyl alcohol) used for ultrasonication, and the shape of the vessel used for sonication. The cumulative results lead to an increase in the crystalline region directly proportional to the condition of sonication.

View Article and Find Full Text PDF

Interesting alternatives to expensive biodegradable polymers are their composites with natural fillers. The addition of biochar to a blend of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate--4-hydroxybutyrate) was studied, and the resulting materials were evaluated for their properties and changes during degradation. Introducing biochar as a filler brought a noticeable improvement in electrostatic properties.

View Article and Find Full Text PDF

Color Modifications of a Maxillofacial Silicone Elastomer under the Effect of Cigarette Smoke.

Materials (Basel)

August 2024

Department of Oral and Maxillofacial Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700511 Iasi, Romania.

Although it is known (from the observations of medical professionals) that cigarette smoke negatively affects maxillofacial prostheses, especially through staining/discoloration, systematic research in this regard is limited. Herein, the color modifications of M511 maxillofacial silicone, unpigmented and pigmented with red or skin tone pigments, covered with mattifiers, or with makeup and mattifiers, and directly exposed to cigarette smoke, were investigated by spectrophotometric measurements in the CIELab and RGB color systems. The changes in color parameters are comparatively discussed, showing that the base silicone material without pigmentation and coating undergoes the most significant modifications.

View Article and Find Full Text PDF

Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied.

View Article and Find Full Text PDF

Covalent cross-linked hydrogels based on chitosan and poly(maleic acid--vinyl acetate) were prepared as spherical beads. The structural modifications of the beads during the preparation steps (dropping in liquid nitrogen and lyophilization, thermal treatment, washing with water, and treatment with NaOH) were monitored by FT-IR spectroscopy. The hydrogel beads have a porous inner structure, as shown by SEM microscopy; moreover, they are stable in acidic and basic pH due to the covalent crosslinking.

View Article and Find Full Text PDF

Design and development of novel, low-cost and efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media is crucial for lowering the reaction overpotential and thus decreasing the energy input during the water electrolysis process. Herein, we present the synthesis of new 14-membered bis-thiosemicarbazide and bis-isothiosemicarbazide macrocycles and their nickel(II) complexes characterized by spectroscopic techniques (H and C NMR, IR, UV-vis), electrospray ionization mass spectrometry, single crystal X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and cyclic voltammetry. Finally, the activity of nickel(II) complexes towards OER is reported.

View Article and Find Full Text PDF

Eying the increasing impact of hyaluronic acid (HA) and its multifaceted applications, this study employs a non-toxic, one-pot strategy to develop injectable, self-healing hydrogels for biomedical applications. Phytic acid (PA), a plant-derived organic acid with high biocompatibility and numerous hydroxyl groups, can act as a cross-linking agent to form hydrogen-bonded networks with the HA chains. The study examined the optimal mass ratio of HA to PA to achieve superior hydrogel performance.

View Article and Find Full Text PDF

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features.

View Article and Find Full Text PDF

In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using FeO (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of FeO ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%).

View Article and Find Full Text PDF

This study focuses on the development of adsorptive materials to retain degraded 5w40 motor oil. The materials were prepared using xanthan (XG) and XG esterified with acrylic acid (XGAC) as the polymeric matrix. LignoBoost lignin (LB), LB esterified with oleic (LBOL), stearic acid (LBST) and montmorillonite (CL) were added into XG and XGAC matrices to obtain the adsorbents.

View Article and Find Full Text PDF