4 results match your criteria: ""Alessandro Faedo" Institute of Information Science and Technologies (ISTI)[Affiliation]"

The limited availability of specialized image databases (particularly in hospitals, where tools vary between providers) makes it difficult to train deep learning models. This paper presents a few-shot learning methodology that uses a pre-trained ResNet integrated with an encoder as a backbone to encode conditional shape information for the classification of neonatal resuscitation equipment from less than 100 natural images. The model is also strengthened by incorporating a reliability score, which enriches the prediction with an estimation of classification reliability.

View Article and Find Full Text PDF

Vision transformers represent the cutting-edge topic in computer vision and are usually employed on two-dimensional data following a transfer learning approach. In this work, we propose a trained-from-scratch stacking ensemble of 3D-vision transformers to assess prostate cancer aggressiveness from T2-weighted images to help radiologists diagnose this disease without performing a biopsy. We trained 18 3D-vision transformers on T2-weighted axial acquisitions and combined them into two- and three-model stacking ensembles.

View Article and Find Full Text PDF

Brain metastases from NSCLC treated with stereotactic radiotherapy: prediction mismatch between two different radiomic platforms.

Radiother Oncol

January 2023

Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.

Background And Purpose: Radiomics enables the mining of quantitative features from medical images. The influence of the radiomic feature extraction software on the final performance of models is still a poorly understood topic. This study aimed to investigate the ability of radiomic features extracted by two different radiomic platforms to predict clinical outcomes in patients treated with radiosurgery for brain metastases from non-small cell lung cancer.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa aggressiveness, for which a biopsy is required, is fundamental for patient management. Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative assessment of mpMRI might provide the radiologist with an objective and noninvasive tool for supporting the decision-making in clinical practice and decreasing intra- and inter-reader variability.

View Article and Find Full Text PDF