Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.44.9100DOI Listing

Publication Analysis

Top Keywords

nanostructure co/cu
4
co/cu multilayers
4
nanostructure
1
multilayers
1

Similar Publications

The temperature-resolved structure evolution of quinary and quaternary equimolar oxides containing Mg, Ni, Zn, Co, and Cu is investigated by in situ synchrotron diffraction. Important structural modifications occur already at mild temperatures and depend on the elements involved. All quaternary compounds with χ(Cu) = 0.

View Article and Find Full Text PDF

It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(g·hr).

View Article and Find Full Text PDF

Turn-on fluorescence detection of carbon monoxide in plant tissues based on Cu modulated polydihydroxyphenylalanine nanosensors.

Anal Methods

September 2024

Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

As an important signaling molecule, carbon monoxide (CO) plays an important role in plant growth and development including affecting stomatal movement, stress response and root development. Thus, it is necessary to develop fluorescent probes that can be used to detect CO in live plant tissues and further enable a deep-understanding of its biological function, mechanism and metabolism. In this paper, a novel and sensitive fluorescent probe based on Cu modulated polydihydroxyphenylalanine nanoparticles (PDOAs) has been developed for the detection of CO.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers embedded with borate glasses of 45B5 composition doped with Co, Cu, and Zn (46.1 B₂O₃26.9-X CaO24.

View Article and Find Full Text PDF

Self-Reconstructed Metal-Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution.

Nanomaterials (Basel)

July 2024

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China.

Refining synthesis strategies for metal-organic framework (MOF)-based catalysts to improve their performance and stability in an oxygen evolution reaction (OER) is a big challenge. In this study, a series of nanostructured electrocatalysts were synthesized through a solvothermal method by growing MOFs and metal-triazolates (METs) on nickel foam (NF) substrates (named MET-M/NF, M = Fe, Co, Cu), and these electrocatalysts could be used directly as OER self-supporting electrodes. Among these electrocatalysts, MET-Fe/NF exhibited the best OER performance, requiring only an overpotential of 122 mV at a current density of 10 mA cm and showing remarkable stability over 15 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!