Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.44.6511 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
We present a versatile method for synthesizing high-quality molybdenum disulfide (MoS) crystals on graphite foil edges via chemical vapor deposition (CVD). This results in MoS/graphene heterostructures with precise epitaxial layers and no rotational misalignment, eliminating the need for transfer processes and reducing contamination. Utilizing in situ transmission electron microscopy (TEM) equipped with a nano-manipulator and tungsten probe, we mechanically induce the folding, wrinkling, and tearing of freestanding MoS crystals, enabling the real-time observation of structural changes at high temporal and spatial resolutions.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Center of Photosensitive Chemicals Engineering, East China University of Science and Technology Shanghai 200237 China
Given that proteins with minor variations in amino acid sequences cause distinct functional outcomes, identifying and quantifying similar proteins is crucial, but remains a long-standing challenge. Herein, we present a two-dimensional orthogonal fluorescence and chemiluminescence design strategy for the probe DCM-SA, which is sequentially activated by albumin-mediated hydrolysis, exhibiting light-up fluorescence and photo-induced cycloaddition generating chemiluminescence, enabling orthogonal signal amplification for discrimination of subtle differences between similar proteins. By orthogonalizing these dual-mode signals, a two-dimensional work curve of fluorescence and chemiluminescence is established to distinguish and quantify similar proteins HSA and BSA.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA.
Local stresses in a tissue, a collective property, regulate cell division and apoptosis. In turn, cell growth and division induce active stresses in the tissue. As a consequence, there is a feedback between cell growth and local stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!