Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.43.6843DOI Listing

Publication Analysis

Top Keywords

relaxation excitons
4
excitons coherently
4
coherently strained
4
strained cdte/znte
4
cdte/znte quantum
4
quantum wells
4
relaxation
1
coherently
1
strained
1
cdte/znte
1

Similar Publications

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

Light-Harvesting Spin Hyperpolarization of Organic Radicals in a Metal-Organic Framework.

J Am Chem Soc

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.

View Article and Find Full Text PDF

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!