Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.43.3920 | DOI Listing |
Nanophotonics
January 2025
Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Madrid, 28040 Spain.
Polar biaxial crystals with extreme anisotropy hold promise for the spatial control and the manipulation of polaritons, as they can undergo topological transitions. However, taking advantage of these unique properties for nanophotonic devices requires to find mechanisms to modulate dynamically the material response. Here, we present a study on the propagation of surface phonon polaritons (SPhPs) in a photonic architecture based on a thin layer of α-MoO deposited on a semiconducting 4H-SiC substrate, whose carrier density can be tuned through photoinduction.
View Article and Find Full Text PDFSci Rep
August 2024
Faculty of Physics, Institute of Spintronics and Quantum Information, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland.
We investigated the thermally induced surface acoustic waves in CoFeB/MgO heterostructures with different underlayer materials. Our results show a direct correlation between the density and elastic parameters of the underlayer materials and the surface phonon dispersion. Using finite element method-based simulations, we calculate the effective elastic parameters (such as elastic tensor, Young's modulus, and Poisson's ratio) for multilayers with different underlayer materials.
View Article and Find Full Text PDFAdv Mater
August 2024
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons.
View Article and Find Full Text PDFSurface phonon polaritons (SPhPs) supported by polar dielectrics have been a promising platform for nanophotonics in mid-infrared spectral range. In this work, the temporal dynamic behavior of polar dielectric nanoparticles without (or with) spatial dispersion/nonlocality driven by the ultrashort Gaussian pulses is carried out. We demonstrate that three possible scenarios for the temporal evolutions of the dipole moment including ultrafast oscillations with the decay, exponential decay, and keeping a Gaussian shape exist, when the pulse duration of the incident field is much shorter than, similar to, and much longer than the localized SPhP lifetime.
View Article and Find Full Text PDFACS Nano
June 2024
Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
Surface phonon polaritons (SPhPs) originate from the coupling of mid-IR photons and optical phonons, generating evanescent waves along the polar dielectric surface. The emergence of SPhPs gives rise to a phase of quantum matter that facilitates long-range energy transfer (100s μm-scale). Albeit of the recent experimental progress to observe the enhanced thermal conductivity of polar dielectric nanostructures mediated by SPhPs, the potential mechanism to present the high thermal conductivity beyond the Landauer limit has not been addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!