Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.43.3164 | DOI Listing |
Nanomaterials (Basel)
December 2024
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashihiroshima 739-8511, Hiroshima, Japan.
I revisit the well-known phase transition between the hexagonal skyrmion lattice and the homogeneous state within the phenomenological Dzyaloshinskii theory for chiral magnets, which includes only the exchange, Dzyaloshinskii-Moriya, and Zeeman energy contributions. I show that, in a narrow field range near the saturation field, the hexagonal skyrmion order gradually transforms into a square arrangement of skyrmions. Then, by the second-order phase transition during which the lattice period diverges, the square skyrmion lattice releases a set of repulsive isolated skyrmions.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashihiroshima 739-8511, Hiroshima, Japan.
J Phys Condens Matter
September 2024
Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India.
The quest for intrinsically ferromagnetic topological materials is a focal point in the study of topological phases of matter, as intrinsic ferromagnetism plays a vital role in realizing exotic properties such as the anomalous Hall effect (AHE) in quasi-two-dimensional materials, and this stands out as one of the most pressing concerns within the field. Here, we investigate a novel higher order member of the MnSb2nTe3n+1family, MnSbTe, for the first time combining magnetotransport and angle-resolved photoemission spectroscopy (ARPES) measurements. Our magnetic susceptibility experiments identify ferromagnetic transitions at temperature= 18.
View Article and Find Full Text PDFACS Nano
September 2024
School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India.
The application of an external magnetic field to the cathode shows great promise in facilitating the hydrogen evolution reaction (HER) via water electrolysis. However, the criteria for designing such cathodes are still under investigation. Among various aspects, understanding the effect of different magnetic states of the cathode material is crucial, especially for the HER in alkaline conditions, which possesses different reaction steps compared to that in acidic conditions.
View Article and Find Full Text PDFNano Lett
July 2024
Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!