Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.43.13983DOI Listing

Publication Analysis

Top Keywords

far-infrared spectroscopy
4
spectroscopy minibands
4
minibands confined
4
confined donors
4
donors gaas/alxga1-xas
4
gaas/alxga1-xas superlattices
4
far-infrared
1
minibands
1
confined
1
donors
1

Similar Publications

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Microscopic mapping of infrared modulated photoluminescence spectra with a spatial resolution of ∼2 μm.

Rev Sci Instrum

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China.

Infrared photoluminescence (PL) spectroscopy with micron-scale spatial resolution is essential for the optoelectronic characterization of narrow-gap microstructures and single defects, yet it poses significant challenges due to the exceedingly weak PL signal and strong background thermal emission. This work introduces an infrared micro-PL (μPL) mapping system that achieves a spatial resolution of ∼2 μm, leveraging the inherent advantages of the step-scan Fourier transform infrared spectrometer-based modulated PL technique in the mid- and far-infrared regions. The configuration of the experimental system is described, and a theoretical upper limit of spatial resolution is derived to be about 1.

View Article and Find Full Text PDF

Glyme-based electrolyte solutions provide new concepts for developing suitable lithium-ion batteries. The so-called solvate ionic liquids (SILs) are promising electrolytes. They are most efficient in equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide ([Li][NTf]) and glyme, wherein the [Li] cation is supposedly fully solvated by glyme molecules.

View Article and Find Full Text PDF

Short-time collective dynamics of an ionic liquid: A computer simulation study with non-polarizable and polarizable models, and ab initio molecular dynamics.

J Chem Phys

December 2024

Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.

Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes.

View Article and Find Full Text PDF

The far-infrared absorption spectrum of monodeuterated water vapor, HDO, is analyzed using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spectroscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of HO and DO leading to a HDO abundance close to 50%. The room temperature spectra recorded in the 50-720 cm range cover most of the rotational band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!