Excitations in the mixed state of type-II superconductors.

Phys Rev B Condens Matter

Published: January 1991

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.43.1212DOI Listing

Publication Analysis

Top Keywords

excitations mixed
4
mixed state
4
state type-ii
4
type-ii superconductors
4
excitations
1
state
1
type-ii
1
superconductors
1

Similar Publications

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.

View Article and Find Full Text PDF

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

A two-dimensional fluorescence and chemiluminescence orthogonal probe for discriminating and quantifying similar proteins.

Chem Sci

January 2025

Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Center of Photosensitive Chemicals Engineering, East China University of Science and Technology Shanghai 200237 China

Given that proteins with minor variations in amino acid sequences cause distinct functional outcomes, identifying and quantifying similar proteins is crucial, but remains a long-standing challenge. Herein, we present a two-dimensional orthogonal fluorescence and chemiluminescence design strategy for the probe DCM-SA, which is sequentially activated by albumin-mediated hydrolysis, exhibiting light-up fluorescence and photo-induced cycloaddition generating chemiluminescence, enabling orthogonal signal amplification for discrimination of subtle differences between similar proteins. By orthogonalizing these dual-mode signals, a two-dimensional work curve of fluorescence and chemiluminescence is established to distinguish and quantify similar proteins HSA and BSA.

View Article and Find Full Text PDF

We report the development and optimization of a scalable flow process for metallaphotoredox (Ir/Ni) C-O coupling, a mild and efficient approach for forming alkyl-aryl ethers, a common motif in medicinal and process chemistry settings. Time-resolved infrared spectroscopy (TRIR) highlighted the amine as the major quencher of the photocatalyst triplet excited state, along with the formation of an Ir(II) species that, in the presence of the Ni cocatalyst, has its lifetime shortened, suggesting reductive quenching of Ir(III)*, followed by reoxidation facilitated by the Ni cocatalyst. TRIR and batch reaction screening was used to develop conditions transferrable to flow, and many processing benefits of performing the reaction in flow were then demonstrated using a simple to construct/operate, small-footprint FEP coil flow reactor, including short (<10 min) space times and reduced catalyst loadings (down to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!