Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.43.1074 | DOI Listing |
J Chem Phys
January 2025
Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.
Single-Molecule Junctions (SMJs) are key platforms for the exploration of electron transport at the molecular scale. In this study, we present a method that employs different exchange-correlation density functionals for the molecule and the lead domains in an SMJ, enabling the selection of the optimal one for each part. This is accomplished using a formally exact projection-based density-functional theory (DFT-in-DFT) embedding technique combined with the non-equilibrium Green's function method to predict zero-bias conductance.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA.
The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!