Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.42.4763 | DOI Listing |
Small
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.
View Article and Find Full Text PDFNanoscale
January 2025
Institue of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria.
In the field of nanocluster catalysis, it is crucial to understand the interplay of different parameters, such as ligands, support and pretreatment and their effect on the catalytic process. In this study, we chose the selective hydrogenation of phenylacetylene as a model reaction and employed two gold nanoclusters as catalysts, the phosphine protected Au and the thiolate protected Au, each with different binding motifs. They were supported on MgO, AlO and a hydrotalcite (HT), chosen for their different acidity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O to form M-OO species, leaving the development of new types of O-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [FeZnH(bibtz)] (, Hbibtz = 1,1'-5,5'-bibenzo[][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN site.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiamen University, College of Chemistry and Chemical Engineering, Siming streat, Xiamen, CHINA.
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study reports a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, aiming to selectively catalyze the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100% 4-electron selectivity, evidenced by 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!