Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.42.2711 | DOI Listing |
Phys Rev Lett
December 2024
RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.
We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Universidade Federal de Pernambuco, Departamento de FÃsica, 50670-901, Recife, Brazil.
We employ the isomonodromic method to study linear scalar massive perturbations of Kerr black holes for generic scalar masses Mμ and generic black hole spins a/M. We find that the longest-living quasinormal mode and the first overtone coincide for (Mμ)_{c}≃0.370 4981 and (a/M)_{c}≃0.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid.
View Article and Find Full Text PDFMetasurfaces based on chalcogenide phase-change materials offer a highly promising route towards the realization of non-volatile reconfigurable metasurfaces. However, since their switching mechanism between amorphous and crystalline states is based on thermal stimuli, phase-change metasurfaces should be treated carefully when operating under high power laser sources, since optically induced heating could trigger unwanted state changes during their operation. In this work, therefore, we develop a thermodynamic model capable of tracking the crystallization, melting and reamorphization dynamics of phase-change optical metadevices, and so too their optical performance, when operating under (i.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!