Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.42.11833 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
An investigation of the low-frequency (i.e., less than 5 THz), inter-molecular dynamics of three imidazolium-based ionic liquids-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][DCA]), and 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][DCA])-is presented using two-dimensional (2D) Raman-THz spectroscopy combined with molecular dynamics (MD) simulations.
View Article and Find Full Text PDFSmall Methods
January 2025
College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.
The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.
View Article and Find Full Text PDFNanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!