Far-infrared spectroscopic investigations on CuO.

Phys Rev B Condens Matter

Published: December 1990

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.42.10060DOI Listing

Publication Analysis

Top Keywords

far-infrared spectroscopic
4
spectroscopic investigations
4
investigations cuo
4
far-infrared
1
investigations
1
cuo
1

Similar Publications

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.

View Article and Find Full Text PDF

The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.

View Article and Find Full Text PDF

Vanadium dioxide (VO) and its unique phase transition from semiconductor to metal near room temperature ( = 68 °C) offer significant potential for applications in smart materials and advanced technologies. This transition is accompanied by a drastic modulation of VO's optical properties in the near- and far-infrared regions. Tungsten (W) has been successfully used as a dopant to lower the transition to room temperature.

View Article and Find Full Text PDF

On the nature of hydrogen bonding in the HS dimer.

Nat Commun

November 2024

Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany.

Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the HS dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the HS dimer in superfluid helium nanodroplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!