Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.42.10060 | DOI Listing |
Sci Adv
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Novosibirsk State University, Pirogov str. 1, Novosibirsk 630090, Russian Federation.
Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, New York University, New York, New York 10003, USA.
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institut National de la Recherche Scientifique Centre Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes J3X 1P7, Canada.
Vanadium dioxide (VO) and its unique phase transition from semiconductor to metal near room temperature ( = 68 °C) offer significant potential for applications in smart materials and advanced technologies. This transition is accompanied by a drastic modulation of VO's optical properties in the near- and far-infrared regions. Tungsten (W) has been successfully used as a dopant to lower the transition to room temperature.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany.
Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the HS dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the HS dimer in superfluid helium nanodroplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!