Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.42.8791 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
A fluoroalkyl-containing electron acceptor (Y-SSM) is designed and synthesized to control the orientation of the benchmark non-fullerene acceptor Y6 in thin films. Due to the low surface energy of the two fluoroalkyl chains at the terminal part of Y-SSM, it spontaneously segregates to the film surface during spin coating, forming a monolayer of edge-on oriented Y-SSM. The Y-SSM monolayer leads to crystallization of the underlying Y6 to induce a standing-up orientation in the bulk of the films, which is strikingly different from pure Y6 films that tend to be a face-on orientation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF.
View Article and Find Full Text PDFSci Rep
January 2025
Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany.
We investigate the growth of amorphous MoSi thin films using magnetron co-sputtering and optimize the growth conditions with respect to crystal structure and superconducting properties (e.g., critical temperature [Formula: see text]).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.
Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).
View Article and Find Full Text PDFCommun Mater
January 2025
Physik-Institut, Universität Zürich, Zürich, Switzerland.
The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!