Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.41.4901DOI Listing

Publication Analysis

Top Keywords

mesoscopic noise
4
noise studies
4
studies atomic
4
atomic motions
4
motions cold
4
cold amorphous
4
amorphous conductors
4
mesoscopic
1
studies
1
atomic
1

Similar Publications

Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC.

Imaging Neurosci (Camb)

August 2024

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI.

View Article and Find Full Text PDF

Thermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes.

View Article and Find Full Text PDF

High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks.

Brain Inform

December 2024

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.

High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs.

View Article and Find Full Text PDF

Meso Hybridized Silk Fibroin Watchband for Wearable Biopotential Sensing and AI Gesture Signaling.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China.

Human biopotential signals, such as electrocardiography, are closely linked to health and chronic conditions. Electromyography, corresponds to muscle actions and is pertinent to human-machine interactions. Here, we present a type of smart and flexible watchband that includes a mini flexible electrode array based on Mo-Au filament mesh, combined with mesoscopic hybridized silk fibroin films.

View Article and Find Full Text PDF

We investigate the THz intersubband absorption behavior of a single 40-nm wide GaAs/AlGaAs square quantum well (QW) using Johnson noise thermometry. In our measurements, the Johnson noise associated with intersubband absorption is measured from the in-plane conduction channel of the QW while its intersubband absorption behavior is being tuned through the independent control of the charge density and the perpendicular DC electric field. Our measurements enable the study of intersubband absorption of a small (∼20,000 and potentially fewer) number of electrons in a single mesoscopic device, as well as direct measurement of the electron heating from intersubband absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!