Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.41.12362 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.
View Article and Find Full Text PDFSmall Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!