Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.40.5715 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.
Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:
Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O to form M-OO species, leaving the development of new types of O-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [FeZnH(bibtz)] (, Hbibtz = 1,1'-5,5'-bibenzo[][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN site.
View Article and Find Full Text PDFInorg Chem
January 2025
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!