Amplitude breathers in conjugated polymers.

Phys Rev B Condens Matter

Published: July 1989

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.40.1839DOI Listing

Publication Analysis

Top Keywords

amplitude breathers
4
breathers conjugated
4
conjugated polymers
4
amplitude
1
conjugated
1
polymers
1

Similar Publications

Neuromorphic systems, inspired by nature, are sought to efficiently process analogue inputs in real and complex environments. This could lead to ultralow-power in-sensor intelligent edge computers. Here, we present an artificial sensory oscillator neuron consisting of a III-V semiconductor micropillar quantum resonant tunnelling diode (RTD) with GaAs photosensitive absorption layers.

View Article and Find Full Text PDF

The dynamics of a system composed of elastic hard particles confined by an isotropic harmonic potential are studied. In the low-density limit, the Boltzmann equation provides an excellent description, and the system does not reach equilibrium except for highly specific initial conditions: it generically evolves toward and stays in a breathing mode. This state is periodic in time, with a Gaussian velocity distribution, an oscillating temperature, and a density profile that oscillates as well.

View Article and Find Full Text PDF

Hydrodynamic modulation instability triggered by a two-wave system.

Chaos

October 2024

Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan.

Article Synopsis
  • Modulation instability (MI) causes regular nonlinear wave trains to break down, potentially resulting in localized phenomena like rogue waves across various nonlinear dispersive media, including hydrodynamics and optics.
  • The classical MI dynamics can start with small-amplitude sidebands around a main wave peak, often visualized as a three-wave interaction setup in experiments, but more complex patterns can emerge through breather solutions of the nonlinear Schrödinger equation (NLSE).
  • This study explores MI in deep-water surface gravity waves, demonstrating that it can be initiated by just a single unstable sideband, yielding experimental results that align closely with nonlinear simulations, while also indicating shifts in focusing cycle behavior observed in longer-term wave evolution.
View Article and Find Full Text PDF

Resonant Akhmediev breathers.

Sci Rep

May 2024

Photonics Devices and Systems Group, Singapore University of Technology and Design, 8 Somapah Rd., Singapore, 487372, Singapore.

Modulation instability is a phenomenon in which a minor disturbance within a carrier wave gradually amplifies over time, leading to the formation of a series of compressed waves with higher amplitudes. In terms of frequency analysis, this process results in the generation of new frequencies on both sides of the original carrier wave frequency. We study the impact of fourth-order dispersion on this modulation instability in the context of nonlinear optics that lead to the formation of a series of pulses in the form of Akhmediev breather.

View Article and Find Full Text PDF

The existence and properties of envelope solitary waves on a periodic traveling-wave background, called traveling breathers, are investigated numerically in representative nonlocal dispersive media. Using a fixed-point computational scheme, a space-time boundary-value problem for bright traveling breather solutions is solved for the weakly nonlinear Benjamin-Bona-Mahony equation, a nonlocal, regularized shallow water wave model, and the strongly nonlinear conduit equation, a nonlocal model of viscous core-annular flows. Curves of unit-mean traveling breather solutions within a three-dimensional parameter space are obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!