Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.40.119DOI Listing

Publication Analysis

Top Keywords

magnetic pairing
4
pairing mechanism
4
mechanism superconductivity
4
superconductivity heisenberg
4
heisenberg model
4
magnetic
1
mechanism
1
superconductivity
1
heisenberg
1
model
1

Similar Publications

Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task.

View Article and Find Full Text PDF

A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices.

J Phys Chem Lett

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.

View Article and Find Full Text PDF

Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.

View Article and Find Full Text PDF

Background: Quadriceps dysfunction is ubiquitous after anterior cruciate ligament (ACL) reconstruction (ACLR). Addressing quadriceps dysfunction is crucial to improve function, reduce the reinjury risk, and maintain long-term knee health. While deficits specific to the quadriceps are well documented, less is known about the effect of an ACL injury on other lower extremity muscle groups.

View Article and Find Full Text PDF

Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes.

ACS Nano

January 2025

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!