Stimulus-function, wind-up and modulation by diffuse noxious inhibitory controls of responses of convergent neurons of the spinal trigeminal nucleus oralis.

Eur J Neurosci

Laboratoire de Physiologie Oro-Faciale, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France.

Published: January 1999

Extracellular unitary recordings were made from 53 spinal trigeminal nucleus oralis (Sp5O) convergent neurons in halothane-anaesthetized rats. The neurons had an ipsilateral receptive field including mainly oral or perioral regions. They responded to percutaneous electrical stimulation with two peaks of activation. The first had a short latency (4.3 +/- 0.3 ms) and low threshold (0.35 +/- 0.04 mA), whereas the second had a longer latency (68.1 +/- 3.4 ms) and higher threshold (7.3 +/- 0.5 mA). Intracutaneous injection of capsaicin (0.1%) produced a strong and rapid reduction of the long-latency responses of Sp5O convergent neurons with little effect on the short-latency responses. In most cases (73%), the long-latency responses exhibited a wind-up phenomenon during repetitive (0.66 Hz) suprathreshold electrical stimulation. These results suggest that C-fibres mediate the long-latency response of Sp5O convergent neurons. Regarding the C-fibre-evoked responses, a linear relationship between the intensity of the applied current and the magnitude of the response was found within the one to three times threshold range. The Sp5O convergent neurons also encoded the intensity of mechanical stimuli applied to the skin or mucosa in the 5-50 g ranges. The evoked activity of Sp5O convergent neurons could be suppressed by noxious heat applied to the tail (52 degrees C) and long-lasting poststimulus effects followed this. These findings show that convergent neurons in the Sp5O resemble those in the deep laminae of the spinal dorsal horn and spinal trigeminal nucleus caudalis, and further support that the Sp5O plays a part in the processing of nociceptive information from the orofacial region.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.1999.00404.xDOI Listing

Publication Analysis

Top Keywords

convergent neurons
28
sp5o convergent
20
spinal trigeminal
12
trigeminal nucleus
12
neurons
8
nucleus oralis
8
electrical stimulation
8
long-latency responses
8
convergent
7
sp5o
7

Similar Publications

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!