Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.54.r12717 | DOI Listing |
J Colloid Interface Sci
December 2024
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Institute of Process Engineering, Technische Universität Dresden, 01069 Dresden, Germany. Electronic address:
Hypothesis: The surface wettability influences the oversaturation-driven growth of gas bubbles on the surface via the contact angle. Larger contact angles on hydrophobic surfaces compared to hydrophilic ones lead to faster growth of bubbles nucleating at microcavities of identical size.
Experiments: Cylindric micro-cavities were etched in silicon wafers as nucleation sites.
Sensors (Basel)
November 2024
Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
A numerical tool for simulating the detection signals of electromagnetic nondestructive testing technology (ENDT) is of great significance for studying detection mechanisms and improving detection efficiency. However, the quantitative analysis methods for ENDT have not yet been sufficiently studied due to the absence of an effective constitutive model. This paper proposed a new magneto-mechanical model that can reflect the dependence of relative permeability on elasto-plastic deformation and proposed a finite element-infinite element coupling method that can replace the traditional finite element truncation boundary.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an effective way to achieve an improved flux pinning capacity. The purpose of this study is to explore the influence of mixed-nanoparticle pinning, with the co-addition of non-magnetic (BaTiO; BT) and various types of magnetic spinel ferrite (MFeO, abbreviated as MFO, where M = Mn, Co, Cu, Zn, and Ni) nanoparticles, on the superconductivity and flux pinning performances of the high-temperature superconductor YBaCuO (YBCO).
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Superconductors based on transition metal dichalcogenides are of substantial current relevance towards the material realization of topological superconductivity. Here, we report a detailed study on the synthesis and characterization of single crystals of 2H-TaSeS. A superconducting transition is confirmed at4.
View Article and Find Full Text PDFNat Commun
November 2024
School of Materials Science and Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, China.
Additive manufacturing (AM) shows promise as a method for producing soft-magnetic multicomponent alloys for use in electric motors and sustainable electromobility applications. However, the simultaneous achievement of a high saturation magnetic flux density (B) and a low coercivity (H) in AM soft-magnetic materials remains challenging. Herein, we present an approach that integrates an elemental powder mixture of FeCoNi with FeO nano-oxides, which is then subjected to laser powder bed fusion (LPBF) followed by high-temperature annealing to achieve an FCC-structured FeCoNi MEA/FeO composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!