Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.53.1886 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Laboratory of Atomic-scale and Micro & Nano Manufacturing, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.
This study explores the fabrication of ZnO-SiO composite films on silicon substrates via a sol-gel method combined with spin-coating, followed by annealing at various temperatures. The research aims to enhance the UV emission and photoelectric properties of the films. XRD showed that the prepared ZnO sample has a hexagonal structure.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Terahertz Photonics Laboratory, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump-probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities of Mn were found to show photoconductivity and absorption bands starting at the 700 nm wavelength threshold and a broad peak located at 800 nm.
View Article and Find Full Text PDFACS Nano
December 2024
Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China.
Bioinspired light-driven ion transport in two-dimensional (2D) nanofluidics offers exciting prospects for solar energy harvesting. Current single-component nanofluidic membranes often suffer from low light-induced driving forces due to the easy recombination of photogenerated electron-hole pairs. Herein, we present a Pt@WS Mott-Schottky heterojunction-based 2D nanofluidic membrane for boosting light-driven active ion transport and solar enhanced ionic power harvesting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!