Impurity effects on atomic bonding in Ni3Al.

Phys Rev B Condens Matter

Published: November 1995

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.52.14421DOI Listing

Publication Analysis

Top Keywords

impurity effects
4
effects atomic
4
atomic bonding
4
bonding ni3al
4
impurity
1
atomic
1
bonding
1
ni3al
1

Similar Publications

Prototype of AI-powered assistance system for digitalisation of manual waste sorting.

Waste Manag

January 2025

Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Leoben, Austria. Electronic address:

Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield.

View Article and Find Full Text PDF

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative U.

Polymers (Basel)

January 2025

Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.

Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.

View Article and Find Full Text PDF

This study aims to enhance the electrical conductivity of commercially pure aluminium by minimizing impurities and grain boundaries in its microstructure, ultimately improving the efficiency of electric motors constructed from rotors with squirrel cages made from this material. For this purpose, an aluminium-boron (AlB8) master alloy was added to aluminium with a purity of 99.7%, followed by the application of a grain-coarsening heat treatment to the rotors.

View Article and Find Full Text PDF

Upcycling of photovoltaic waste graphite into high performance graphite anode.

J Colloid Interface Sci

January 2025

Faculty of Metallurgical and Energy Engineering, Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:

High-value recycling of photovoltaic waste graphite (WG) is an effective path to achieve "carbon neutrality". However, the current most adopted methods are landfilling, incineration and leaching, which can lead to undesirable environmental contamination and waste of resources. Here, an energy-efficient and high-value flash recycling strategy is developed in which photovoltaic WG is converted to high-capacity and high-rate graphite anode for lithium-ion batteries (LIBs) in milliseconds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!