Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.52.10788 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary.
The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.
View Article and Find Full Text PDFJ Chem Phys
December 2024
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Effectively controlling exciton-polaritons is crucial for advancing them in optical computation. In this work, we propose utilizing the valley-selective optical Stark effect (OSE) as an all-optical way to achieve the spatiotemporal control of polariton flow. We demonstrate the polarization-selective concentration of polaritons at pre-determined locations by wavefront shaping of the polaritons through an in-plane bar-code potential induced by the OSE, which helps overcome the intra-cavity disorder in potential distribution.
View Article and Find Full Text PDFNanophotonics
June 2024
Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA.
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling.
View Article and Find Full Text PDFNanophotonics
June 2024
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
The vacuum Rabi splitting (VRS) in molecular polaritons stands as a fundamental measure of collective light-matter coupling. Despite its significance, the impact of molecular disorder on VRS is not fully understood yet. This study delves into the complexities of VRS amidst various distributions and degrees of disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!