Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.52.9283 | DOI Listing |
Materials (Basel)
January 2025
Department of Civil Engineering, Laval University, Québec City, QC G1V 0A6, Canada.
Despite decades of extensive studies, the mechanism of concrete creep remains a subject of debate, mainly due to the complex nature of cement microstructure. This complexity is further amplified by the interplay between water and the cement microstructure. The present study aimed to better understand the creep mechanism through creep tests on microprisms of cement paste at hygral equilibrium.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200082, China.
Triply periodic minimal surfaces (TPMSs) are known for their smooth, fully interconnected, and naturally porous characteristics, offering a superior alternative to traditional porous structures. These structures often suffer from stress concentration and a lack of adjustability. Using laser powder bed fusion (LPBF), we have fabricated Inconel 625 sheet-based TPMS lattice structures with four distinct topologies: Primitive, IWP, Diamond, and Gyroid.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Zhejiang Sunny Optical Company, Yuyao 315400, China.
Dielectric elastomer actuators (DEAs) are difficult to apply to flexible grippers due to their small deformation range and low output force. Hence, a DEA with a large bending deformation range and output force was designed, and a corresponding flexible gripper was developed to realize the function of grasping objects of different shapes. The relationship between the pre-stretch ratio and DEA deformation degree was tested by experiments.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
Many cardiovascular events are triggered by fibrous cap rupture of an atherosclerotic plaque in arteries. However, cap rupture, including the impact of the cap's structural components, is poorly understood. To obtain better mechanistic insights in a biologically and mechanically controlled environment, we previously developed a tissue-engineered fibrous cap model.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany. Electronic address:
Curcumin, a hydrophobic drug derived from the rhizome of Curcuma longa, exhibits significant bioactive properties, including antioxidant and antimicrobial potential. However, its poor water solubility and rapid degradation limit its practical applications. This study presents a novel design of electrospun nanofibers using Curcumin/hydroxypropyl-β-cyclodextrin inclusion complex (HP-β-CD-IC) combined with pullulan to enhance thermal stability and controlled release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!