Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.50.17713 | DOI Listing |
Microsc Microanal
January 2025
Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany.
In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.
View Article and Find Full Text PDFNat Commun
January 2025
Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor BaKFeAs to the hole-doping regime beyond KFeAs by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped BaKFeAs.
View Article and Find Full Text PDFNat Commun
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Density wave (DW) order is believed to be correlated with superconductivity in the recently discovered high-temperature superconductor LaNiO. However, experimental investigations of its evolution under high pressure are still lacking. Here, we explore the quasiparticle dynamics in bilayer nickelate LaNiO single crystals using ultrafast optical pump-probe spectroscopy under high pressures up to 34.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Superconductors based on transition metal dichalcogenides are of substantial current relevance towards the material realization of topological superconductivity. Here, we report a detailed study on the synthesis and characterization of single crystals of 2H-TaSeS. A superconducting transition is confirmed at4.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physics, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China.
Kagome magnets provide a fascinating platform for the realization of correlated topological quantum phases under various magnetic ground states. However, the effect of the magnetic spin configurations on the characteristic electronic structure of the kagome-lattice layer remains elusive. Here, utilizing angle-resolved photoemission spectroscopy and density functional theory calculations, we report the spectroscopic evidence for the spin-reorientation effect of a kagome ferromagnet FeGe, which is composed solely of kagome planes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!