Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.50.15197DOI Listing

Publication Analysis

Top Keywords

calculations spin
4
spin dependence
4
dependence transport
4
transport optical
4
optical properties
4
properties wide
4
wide parabolic
4
parabolic quantum
4
quantum wells
4
calculations
1

Similar Publications

Investigation of the effect of solvation on J(Metal-P) spin-spin coupling.

Phys Chem Chem Phys

January 2025

Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia.

The solvent effect on the indirect J(M-P) spin-spin coupling constant in phosphine selenoether -substituted acenaphthene complexes LMCl is studied at the PP86 level of nonrelativistic and four-component relativistic density functional theory. Depending on the metal, the solvent effect can amount to as much as 50% or more of the total -value. This explains the previously found disagreement between the J(Hg-P) coupling in LHgCl, observed experimentally and calculated without considering solvent effects.

View Article and Find Full Text PDF

Ferromagnetic Fe-TiO spin catalysts for enhanced ammonia electrosynthesis.

Nat Commun

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.

Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.

View Article and Find Full Text PDF

Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.

View Article and Find Full Text PDF

Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.

View Article and Find Full Text PDF

Design for Telecom-Wavelength Quantum Emitters in Silicon Based on Alkali-Metal-Saturated Vacancy Complexes.

ACS Nano

January 2025

Division of Physical Sciences, College of Letters and Science, University of California Los Angeles, Los Angeles, California 90095, United States.

Defect emitters in silicon are promising contenders as building blocks of solid-state quantum repeaters and sensor networks. Here, we investigate a family of possible isoelectronic emitter defect complexes from a design standpoint. We show that the identification of key physical effects on quantum defect state localization can guide the search for telecom-wavelength emitters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!