Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.50.11107DOI Listing

Publication Analysis

Top Keywords

simulations length-scale
4
length-scale change
4
change finger
4
finger growth
4
growth intercalation
4
intercalation compounds
4
simulations
1
change
1
finger
1
growth
1

Similar Publications

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both 'scale-modelling' Reynolds-Averaged Navier-Stokes (RANS) models and 'scale-resolving' Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions.

View Article and Find Full Text PDF

From molecular dynamics (MD) simulations of melt-quenching and thermal aging procedures in pure Ag, Cu, Ag-Cu binary alloys, and Cu-Zr binary alloys, we have identified two distinct amorphous phases for a metastable undercooled liquid: the homogeneous L-phase with low shear rigidity and the heterogenous G-phase with much higher shear rigidity and a heterogeneity length scale Λ. Here, we examine two-phase equilibration studies showing that the G-phase melts to form the L-phase above ~1,000 K, which then transforms to form the crystal (X) phase; however, below the melting point of the G-Phase (~990 K), the X- and G-phases do not transform into each other. We suggest the presence of a G-phase is likely responsible for embrittlement often observed in metallic glasses.

View Article and Find Full Text PDF

Kinetics of vapor-liquid and vapor-solid phase separation under gravity.

Soft Matter

January 2025

Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.

We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws.

View Article and Find Full Text PDF

The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!