Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.50.9721DOI Listing

Publication Analysis

Top Keywords

photoconductivity ktao3li
4
ktao3li single
4
single crystals
4
photoconductivity
1
single
1
crystals
1

Similar Publications

Recent advances in near-field interference detection, inspired by the non-Hermitian coupling-induced directional sensing of Ormia ochracea, have demonstrated the potential of paired semiconductor nanowires for compact light field detection without optical filters. However, practical implementation faces significant challenges including limited active area, architectural scaling constraints, and incomplete characterization of angular and polarization information. Here, we demonstrate a filterless vector light field photodetector, leveraging the angle- and polarization-sensitive near-field interference of non-Hermitian semiconductor nanostructures.

View Article and Find Full Text PDF

Nanostructure engineering for ferroelectric photovoltaics.

Nanoscale

January 2025

Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.

Ferroelectric photovoltaics have attracted increasing attention since their discovery in the 1970s, due to their above-bandgap photovoltage and polarized-light-dependent photocurrent. However, their practical applications have been limited by their weak visible light absorption and low photoconductivity. Intrinsic modification of the material, such as bandgap tuning through chemical doping, has proven effective, but usually leads to the degradation of ferroelectricity.

View Article and Find Full Text PDF

Chemical and biological sensors based on ZnO microwires usually rely on the change in the wire conductance with the ambient gas composition. Yet, sensitivity and recovery time of the conductance are important limitations in these applications. We treated ZnO:Sb micro-wires with single droplets of solvents for very short times and found a significant enhancement of the persistent photo-conductance and a reduction of the recovery time of the resistance by more than an order of magnitude when treated with isopropanol droplets.

View Article and Find Full Text PDF

The soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. The work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals.

View Article and Find Full Text PDF

Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!