Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.50.7488 | DOI Listing |
Adv Mater
January 2025
Center for Hybrid Organic-Inorganic Semiconductors for Energy, Golden, Colorado, 80401, USA.
Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Laboratoire d'Optique Appliquée, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91761 Palaiseau, France.
In this article, we study electron dynamics in HgTe quantum dots with a 1.9 μm gap, a material relevant for infrared sensing and emission, using ultrafast spectroscopy with 35 fs time resolution. Experiments have been carried out at several probing photon energies around the gap, which allows us to follow the relaxation path of the photoexcited electrons.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Collective excitations of bound electron-hole pairs, i.e., excitons, are ubiquitous in condensed matter systems, and it has been shown that they can strongly couple to other degrees of freedom, such as spin, orbital, and lattice.
View Article and Find Full Text PDFExcitons are fundamental quasiparticles that are ubiquitous in photoexcited semiconductors and insulators. Despite causing a sharp and strong photoabsorption near the interband absorption edge, charge-neutral excitons do not yield photocurrent in conventional photovoltaic processes unless dissociated into free charge carriers. Here, we experimentally demonstrate that excitons can directly contribute to photocurrent generation through a nonlinear light-matter interaction in a noncentrosymmetric semiconductor CuI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!