The 43 kDa inositol polyphosphate 5-phosphatase (5-phosphatase) hydrolyses the signalling molecules inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4, 5)P4) and thereby regulates cellular transformation. To investigate the role Ins(1,4,5)P3-mediated Ca2+ oscillations play in cellular transformation, we studied Ins(1,4,5)P3-mediated Ca2+ responses in cells underexpressing the 43 kDa 5-phosphatase. Chronic reduction in 43 kDa 5-phosphatase enzyme activity resulted in a 2.6-fold increase in the resting Ins(1,4,5)P3 concentration and a 4.1-fold increase in basal intracellular Ca2+. The increased Ins(1,4,5)P3 levels resulted in partial emptying (40%) of the Ins(1,4,5)P3-sensitive Ca2+ store, however, store-operated Ca2+ influx remained unchanged. In addition, Ins(1,4,5)P3 receptors were chronically down-regulated in unstimulated cells, as shown by a 53% reduction in [3H]Ins(1,4,5)P3 binding to microsomal receptor sites. Agonist stimulation with endothelin-1 resulted in the rapid rise and fall of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 levels, with no significant differences in the rates of hydrolysis of these second messengers in antisense- or vector-transfected cells. These studies indicate, in contrast to its predicted action, the 43 kDa 5-phosphatase does not metabolise Ins(1, 4,5)P3 and Ins(1,3,4,5)P4 post agonist stimulation. Cells with decreased 43 kDa 5-phosphatase activity exhibited spontaneous Ca2+ oscillations in the absence of any agonist stimulation, and increased sensitivity and amplitude of intracellular Ca2+ responses to both high and low dose endothelin-1 stimulation. We conclude the 43 kDa 5-phosphatase exerts a profound influence on Ins(1,4, 5)P3-induced Ca2+ spiking, both in the unstimulated cell and following agonist stimulation. We propose the enhanced Ca2+ oscillations may mediate cellular transformation in cells underexpressing the 43 kDa 5-phosphatase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.112.5.669 | DOI Listing |
Sci Rep
November 2024
Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
The 5' cap, catalyzed by RNA guanylyltransferase and 5'-phosphatase (RNGTT), is a vital mRNA modification for the functionality of mRNAs. mRNA capping occurs in the nucleus for the maturation of the functional mRNA and in the cytoplasm for fine-tuning gene expression. Given the fundamental importance of RNGTT in mRNA maturation and expression there is a need to further investigate the regulation of RNGTT.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
October 2024
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
Inositol polyphosphate-5-phosphatase (5PTase) is a key enzyme in the inositol signaling pathway. It hydrolyzes the 5-phosphate on the inositol ring of inositol phosphate (IP) or phosphatidylinositol phosphate (PIP). However, there is limited reports on the homologous genes in soybean.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2022
Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
Background: Although Lowe syndrome and Dent disease-2 are caused by Oculocerebrorenal syndrome of Lowe (OCRL) mutations, their clinical severities differ substantially and their molecular mechanisms remain unclear. Truncating mutations in OCRL exons 1-7 lead to Dent disease-2, whereas those in exons 8-24 lead to Lowe syndrome. Herein we identified the mechanism underlying the action of novel OCRL protein isoforms.
View Article and Find Full Text PDFVirulence
December 2021
Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China.
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies.
View Article and Find Full Text PDFAm J Med Genet A
June 2021
Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
Childhood-Onset Schizophrenia (COS) is a very rare and severe psychiatric disorder defined by adult schizophrenia symptoms occurring before the age of 13. We report a microduplication in the 10q26.3 region including part of the Inositol Polyphosphate-5-Phosphatase A (INPP5A) gene that segregates with Schizophrenia Spectrum Disorders (SSDs) in the family of a female patient affected by both COS and Autism Spectrum Disorder (ASD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!