Two strategies have been used for targeted integration at the lys2 locus of Penicillium chrysogenum. In the first strategy the disruption of lys2 was obtained by a single crossing over between the endogenous lys2 and a fragment of the same gene located in an integrative plasmid. lys2-disrupted mutants were obtained with 1.6% efficiency when the lys2 homologous region was 4.9 kb, but no homologous integration was observed with constructions containing a shorter homologous region. Similarly, lys2-disrupted mutants were obtained by a double crossing over (gene replacement) with an efficiency of 0.14% by using two lys2 homologous regions of 4.3 and 3.0 kb flanking the pyrG marker. No homologous recombination was observed when the selectable marker was flanked by short lys2 homologous DNA fragments. The disruption of lys2 was confirmed by Southern blot analysis of three different lysine auxotrophs obtained by a single crossing over or gene replacement. The lys2-disrupted mutants lacked alpha-aminoadipate reductase activity (encoded by lys2) and showed specific penicillin yields double those of the parental nondisrupted strain, Wis 54-1255. The alpha-aminoadipic acid precursor is channelled to penicillin biosynthesis by blocking the lysine biosynthesis branch at the alpha-aminoadipate reductase level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93495 | PMC |
http://dx.doi.org/10.1128/JB.181.4.1181-1188.1999 | DOI Listing |
Wellcome Open Res
June 2018
Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK.
Integrating a desired DNA sequence into yeast genomes is a widely-used genetic manipulation in the budding yeast . The conventional integration method is to use an integrative plasmid such as pRS or YIplac series as the target DNA carrier. The nature of this method risks multiple integrations of the target DNA and the potential loss of integrated DNA during cell proliferation.
View Article and Find Full Text PDFNeotrop Entomol
June 2014
Lab de Química Ecológica, Depto de Ciencias Químicas y Recursos Naturales, Univ de La Frontera, Temuco, Araucanía, Chile.
The European grapevine moth Lobesia botrana (Denis & Schiffermüller) is an economically important insect in Europe. The species invaded vineyards in Chile, Argentina, and California during 2008-2010 causing severe problems. A major component of the sex pheromone, (E,Z)-7,9-dodecadienyl acetate (E7,Z9-12:Ac), is used in a mating disruption technique when grapevine moth populations are low or to monitor pest numbers.
View Article and Find Full Text PDFFungal Genet Biol
June 2014
Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China. Electronic address:
Amino acid biosyntheses are complex but essential processes in growth and differentiation of eukaryotic cells. In the budding yeast Saccharomyces cerevisiae, the lysine biosynthesis via the α-aminoadipate (AA) pathway involves several steps, including reduction of AA to AA 6-semialdehyde by AA reductase ScLys2. In filamentous fungus Penicillium chrysogenum, disruption of the LYS2 gene blocked the lysine biosynthesis but promoted the production of the secondary metabolite penicillin.
View Article and Find Full Text PDFYeast
July 2014
Université François-Rabelais de Tours, EA2106, Biomolécules et Biotechnologies Végétales, Tours, France; Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Colombia.
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the fungal CTG clade. This yeast remains actively studied as a result of its moderate clinical importance and most of all for its potential uses in biotechnology. The aim of the present study was to establish a convenient transformation system for C.
View Article and Find Full Text PDFRegul Pept
November 2009
Department of Biophysics, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil.
Previous studies on angiotensin II (AngII) AT(1) receptor function have revealed that the N-terminal residues of AngII may modulate receptor activation by binding at the receptor extracellular site. A remarkable feature of this site is an insertion of 8 amino acids in the middle of the EC-3 loop including the Cys(274) residue that supposedly makes a disulfide bond with N-terminal Cys(18). As demonstrated by assays with Del(267-275)AT(1), the role of the Cys(18)-Cys(274) disulfide bridge is to keep a conformation of the inserted residues that allows a normal binding of the AngII N-terminal residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!