Hyphomycetes in rain water draining from intact trees.

Rocz Akad Med Bialymst

Department of General Biology, Medical Academy of Białystok.

Published: March 1999

The authors investigated Hyphomycetes in rain water flowing down from leaves of 10 gymnospermous and 10 angiospermous tree species in northeastern Poland. The presence of 57 Hyphomycetes species was noted. Only 17 species were found to develop both on gymnospermous and angiospermous tree species out of 57 found in rain water flowing down the trees. 16 Hyphomycetes species were observed in rain water flowing down the angiospermous trees, while 24 species in the water from the gymnospermous trees. 13 Hyphomycetes species were recorded for the first time from Poland.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rain water
16
water flowing
12
hyphomycetes species
12
hyphomycetes rain
8
gymnospermous angiospermous
8
angiospermous tree
8
tree species
8
trees hyphomycetes
8
species
7
hyphomycetes
5

Similar Publications

First Report of Causing Black Leaf Spot on in China.

Plant Dis

January 2025

Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China;

Chinese yam ( Turcz.), known for its nutrient-rich underground tubers, is both a food source and a traditional Chinese medicinal plant. It offers significant nutritional and medicinal benefits.

View Article and Find Full Text PDF

Optical properties and photobleaching of wildfire ashes aqueous extracts.

Environ Sci Process Impacts

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.

View Article and Find Full Text PDF

Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.

Sensors (Basel)

January 2025

United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.

Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.

View Article and Find Full Text PDF

Precipitable water vapor (PWV) is an important indicator to characterize the spatial and temporal variability of water vapor. A high spatial and temporal resolution of atmospheric precipitable water can be obtained using ground-based GNSS, but its inversion accuracy is usually limited by the weighted mean temperature, Tm. For this reason, based on the data of 17 ground-based GNSS stations and water vapor reanalysis products over 2 years in the Hong Kong region, a new model for water vapor inversion without the Tm parameter is established by deep learning in this paper, the research results showed that, compared with the PWV information calculated by the traditional model using Tm parameter, the accuracy of the PWV retrieved by the new model proposed in this paper is higher, and its accuracy index parameters BIAS, MAE, and RMSE are improved by 38% on average.

View Article and Find Full Text PDF

Africa is grappling with severe food security challenges driven by population growth, climate change, land degradation, water scarcity, and socio-economic factors such as poverty and inequality. Climate variability and extreme weather events, including droughts, floods, and heatwaves, are intensifying food insecurity by reducing agricultural productivity, water availability, and livelihoods. This study examines the projected threats to food security in Africa, focusing on changes in temperature, precipitation patterns, and the frequency of extreme weather events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!