Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevc.52.2608 | DOI Listing |
Soft Matter
January 2025
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Center of Excellence in Energy Conversion, Sharif University of Technology, Tehran, Iran.
Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.
View Article and Find Full Text PDFNat Commun
November 2024
Honda Research Institute USA, Inc., San Jose, CA, 95134, USA.
Nanoribbons (NRs) of atomic layer transition metal dichalcogenides (TMDs) can boost the rapidly emerging field of quantum materials owing to their width-dependent phases and electronic properties. However, the controllable downscaling of width by direct growth and the underlying mechanism remain elusive. Here, we demonstrate the vapor-liquid-solid growth of single crystal of single layer NRs of a series of TMDs (MeX: Me = Mo, W; X = S, Se) under chalcogen vapor atmosphere, seeded by pre-deposited and respective transition metal-alloyed nanoparticles that also control the NR width.
View Article and Find Full Text PDFLangmuir
November 2024
Center of Innovation for Flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States.
The impact of wettability on the confined phase behavior of fluids is paramount for various applications, such as gas storage, carbon dioxide sequestration, and water purification. However, the understanding of the fluid-solid intermolecular interactions in confined systems is still limited and requires further investigation. This work investigates the effect of hydrophilic and hydrophobic nanoporous materials on the adsorption and desorption isotherms of -butane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!