Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevc.49.663 | DOI Listing |
J Phys Chem A
December 2024
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation.
In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a - or -position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the -position of the nitrene group, with ZFS parameters = 0.
View Article and Find Full Text PDFSmall
December 2024
IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, Madrid, 28049, Spain.
Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.
View Article and Find Full Text PDFChemistry
December 2024
Universidad Complutense de Madrid, Organic Chemistry, SPAIN.
The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen = N,N'-bis(salicylidene)ethylenediamine) (M = Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R = Fe2(CO)6(μ-SCH2)2COCH2O)]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().
View Article and Find Full Text PDFChemistry
December 2024
RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Inorganic Chemistry, Landoltweg 1a, 52074, Aachen, GERMANY.
In this study, we present the first experimental determination of the spin state of transition metal complexes by using Hirshfeld Atom Refinement. For the demonstration, the two iron(II) complexes, (NH4)2Fe(SO4)2*6H2O and [Fe(pic)3]Cl2*EtOH were investigated. The method involves the refinement using wavefunctions of different spin multiplicity and comparison against experimental diffraction data by means of refinement indicators and residual electron density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!