Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevc.45.764 | DOI Listing |
Sensors (Basel)
December 2024
Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Jeollanam-do, Republic of Korea.
Nuclear medicine imaging (NMI) is essential for the diagnosis and sensing of various diseases; however, challenges persist regarding image quality and accessibility during NMI-based treatment. This paper reviews the use of deep learning methods for generating synthetic nuclear medicine images, aimed at improving the interpretability and utility of nuclear medicine protocols. We discuss advanced image generation algorithms designed to recover details from low-dose scans, uncover information hidden by specific radiopharmaceutical properties, and enhance the sensing of physiological processes.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
Lignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/HO) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pharmacology, Egyptian Drug Authority (EDA)-Formerly NODCAR, Giza 12654, Egypt.
The antioxidant/antiapoptotic features of dapagliflozin (DPG) have mediated its beneficial actions against several experimental models. However, no studies have been conducted to determine whether DPG mitigates the renal injury triggered by cadmium (Cd). Herein, DPG was studied for its potential to attenuate kidney damage in Cd-intoxicated rats, as well as to unravel the mechanisms involving oxidative events, autophagy, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!