Fractal scaling behavior of water flow patterns on inhomogeneous surfaces.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Published: December 1996

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.54.6511DOI Listing

Publication Analysis

Top Keywords

fractal scaling
4
scaling behavior
4
behavior water
4
water flow
4
flow patterns
4
patterns inhomogeneous
4
inhomogeneous surfaces
4
fractal
1
behavior
1
water
1

Similar Publications

Due to the fluidity of the loose medium inside the waste dump slope, the traditional monitoring system cannot fully reflect the misalignment and slip between particles inside the medium, and it is also difficult to capture the precursor information of the slip of the loose accumulation body. To reveal the dynamic evolution process of the slope instability of the waste dump slope, the coupling test system of the slope instability of the waste dump slope was used to carry out the study of the acoustic emission characteristics of the slope instability dynamic response of the dump slope under the action of vibration, and to quantitatively analyse the staged characteristics of the acoustic emission parameter evolution of the dump slope under the action of different vibration frequencies and its instability initiation node. The results show that with the increase of vibration frequency, the damage mode of the slope model gradually changes from sliding of small particles to large-scale landslides, and presents the stage process of "vibration compaction → vibration equilibrium → dynamic instability"; Under the action of low-frequency and high-amplitude, the slope model mainly shows that the tiny particles and the basement gravel slip, which is difficult to capture with the naked eye, while under the action of high-frequency and low-amplitude, the slope surface is damaged in a large area, and the overall model is unstable; The dynamic instability of the waste dump slope is accompanied by obvious acoustic emission activities, and the changes of the characteristic parameters of acoustic emission reveal, to a certain extent, the evolution of the internal state of the slope in the process of dynamic instability of the waste dump slope and its stage characteristics; The amplitude and energy efficiency of acoustic emission in the time domain show obvious fractal characteristics in the dynamic instability of the waste dump slope.

View Article and Find Full Text PDF

The pore structure of shale is a key factor affecting the occurrence and flow of shale gas, and fractal dimensions can be used to quantitatively describe the complexity of the shale pore structure. In this study, the Leping Formation shale in the Junlian block of the southern Sichuan Basin was investigated. The pore structure characteristics of this shale were examined via low-pressure CO adsorption (LP-COA) and low-temperature N adsorption (LT-NA) methods via field emission scanning electron microscopy (FE-SEM), shale geochemistry, and mineral composition analysis.

View Article and Find Full Text PDF

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Quantitative electroencephalography predicts postoperative delirium in adult cardiac surgical patients from a prospective observational study.

Sci Rep

December 2024

State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China.

The diagnostic and prognostic value of quantitative electroencephalogram (qEEG) in the the onset of postoperative delirium (POD) remains an area of inquiry. We aim to determine whether qEEG could assist in the diagnosis of early POD in cardiac surgery patients. We prospectively studied a cohort of cardiac surgery patients undergoing qEEG for evaluation of altered mental status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!