Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreve.51.2006 | DOI Listing |
Biosens Bioelectron
January 2025
Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.
View Article and Find Full Text PDFForensic Sci Int Genet
January 2025
National Bioforensic Analysis Center, National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute for the US. Department of Homeland Security Science and Technology Directorate, 8300 Research Plaza, Fort Detrick, MD 21702, USA. Electronic address:
The generation of forensic DNA profiles consisting of single nucleotide polymorphisms (SNPs) is now being facilitated by wider adoption of next-generation sequencing (NGS) methods in casework laboratories. At the same time, and in part because of this advance, there is an intense focus on the generation of SNP profiles from evidentiary specimens for so-called forensic or investigative genetic genealogy (FGG or IGG) applications. However, FGG methods are constrained by the algorithms for genealogical database searches, which were designed for use with single-source profiles, and the fact that many forensic samples are mixtures.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania.
We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou University Medical College, Shantou 515041, China.
SARS-CoV-2 continues to be a major global health threat. In this study, we performed a comprehensive meta-analysis on the epitopes of SARS-CoV-2, revealing its immunological landscape. Furthermore, using Shannon entropy for sequence conservation analysis and structural network-based methods identified candidate epitopes that are highly conserved and evolutionarily constrained in SARS-CoV-2 and other zoonotic coronaviruses.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
LABRESIS-Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil.
Human cytomegalovirus (HCMV) DNAemia remains a significant concern for transplant recipients, largely due to mutations in the viral genome that may lead to antiviral-resistant strains. Mutations in the gene are frequently associated with resistance to ganciclovir (GCV), highlighting the importance of early mutation detection to effectively manage viremia. This study aimed to optimize a Sanger sequencing protocol for analyzing GCV resistance-linked mutations in the HCMV gene from plasma samples of transplant patients treated at Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!