Fluctuations of a defect line of molecular orientation in a monolayer.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Published: February 1994

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.49.1375DOI Listing

Publication Analysis

Top Keywords

fluctuations defect
4
defect molecular
4
molecular orientation
4
orientation monolayer
4
fluctuations
1
molecular
1
orientation
1
monolayer
1

Similar Publications

The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.

View Article and Find Full Text PDF

For allowable defect analyses, the fracture toughness of materials needs to be accurately predicted. In this regard, a lower fluctuation of fracture toughness can lead to reduction in safety and economic risks. Crack tip opening displacement (CTOD), which is the representative parameter for fracture toughness, can be measured by various methods, such as the δ5, the J-conversion method, the single clip gauge method, and the double clip gauge method.

View Article and Find Full Text PDF

We explore an innovative approach to sleep stage analysis by incorporating complexity features into sleep scoring methods for mice. Traditional sleep scoring relies on the power spectral features of electroencephalogram (EEG) and the electromyogram (EMG) amplitude. We introduced a novel methodology for sleep stage classification based on two types of complexity analysis, namely multiscale entropy and detrended fluctuation analysis.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

The theoretical study of instabilities, thermal fluctuations, and topological defects in the crystal-rotator-I-rotator-II (X-R-R) phase transitions of -alkanes has been conducted. First, we examine the nature of the R-R phase transition in nanoconfined alkanes. We propose that under confined conditions, the presence of quenched random orientational disorder makes the R phase unstable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!