Time in semiclassical gravity.

Phys Rev D Part Fields

Published: April 1989

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevd.39.2436DOI Listing

Publication Analysis

Top Keywords

time semiclassical
4
semiclassical gravity
4
time
1
gravity
1

Similar Publications

Leveraging Intramolecular π-Stacking to Access an Exceptionally Long-Lived MC Excited State in an Fe(II) Carbene Complex.

J Am Chem Soc

January 2025

Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.

The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived MC excited state for a remarkable 4.

View Article and Find Full Text PDF

Quantum Simulation of Partial Differential Equations via Schrödingerization.

Phys Rev Lett

December 2024

Institute of Natural Sciences, School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

We present a novel new way-called Schrödingerization-to simulate general (quantum and nonquantum) systems of linear ordinary and partial differential equations (PDEs) via quantum simulation. We introduce a new transform, referred to as the warped phase transformation, where any linear-including nonautonamous-system of ordinary or partial differential equation can be recast into a system of Schrödinger's equations, in real time, in a straightforward way. This approach is not only applicable to PDEs for classical problems but is also useful for quantum problems, including the preparation of quantum ground states and Gibbs thermal states, the simulation of quantum states in random media in the semiclassical limit, simulation of Schrödinger's equation in a bounded domain with artificial boundary conditions, and other non-Hermitian physics.

View Article and Find Full Text PDF

We consider an analytically tractable model that exhibits the main features of the Page curve characterizing the evolution of entanglement entropy during evaporation of a black hole. Our model is a gas of noninteracting fermions on a lattice that is released from a box into the vacuum. More precisely, our Hamiltonian is a tight-binding model with a defect at the junction between the filled box and the vacuum.

View Article and Find Full Text PDF

Recent studies and suggest that flavin adenine dinucleotide (FAD) on its own might be able to act as a biological magnetic field sensor. Motivated by these observations, in this study, we develop a detailed quantum theoretical model for the radical pair mechanism (RPM) for the flavin adenine biradical within the FAD molecule. We use the results of existing molecular dynamics simulations to determine the time-varying distance between the radicals on FAD, which we then feed into a quantum master equation treatment of the RPM.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!