Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.35.394 | DOI Listing |
Entropy (Basel)
September 2021
School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100191, China.
Pulsars, especially X-ray pulsars detectable for small-size detectors, are highly accurate natural clocks suggesting potential applications such as interplanetary navigation control. Due to various complex cosmic background noise, the original pulsar signals, namely photon sequences, observed by detectors have low signal-to-noise ratios (SNRs) that obstruct the practical uses. This paper presents the pulsar denoising strategy developed based on the variational mode decomposition (VMD) approach.
View Article and Find Full Text PDFIn the spring of 2017 an ER-2 aircraft campaign was undertaken over continental United States to observe energetic radiation from thunderstorms and lightning. The payload consisted of a suite of instruments designed to detect optical signals, electric fields, and gamma rays from lightning. Starting from Georgia, USA, 16 flights were performed, for a total of about 70 flight hours at a cruise altitude of 20 km.
View Article and Find Full Text PDFAppl Spectrosc
May 2018
Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada.
Cosmic background (CB) radiation, encompassing the sum of emission from all sources outside our own Milky Way galaxy across the entire electromagnetic spectrum, is a fundamental phenomenon in observational cosmology. Many experiments have been conceived to measure it (or its constituents) since the extragalactic Universe was first discovered; in addition to estimating the bulk (cosmic monopole) spectrum, directional variations have also been detected over a wide range of wavelengths. Here we gather the most recent of these measurements and discuss the current status of our understanding of the CB from radio to γ-ray energies.
View Article and Find Full Text PDFPhys Rev Lett
October 2008
Theoretical Physics, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom.
We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets.
View Article and Find Full Text PDFThe submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!