Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.33.1795 | DOI Listing |
Small
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD correlators under principal-value prescription in the infinite boost limit. In the framework of large-momentum effective theory, a quasi-TMD defined from such correlators in a large-momentum hadron state can be matched to the TMD via a factorization formula, whose exact form is derived using soft collinear effective theory and verified at one-loop order.
View Article and Find Full Text PDFNature
January 2025
Edward L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
Phys Rev Lett
December 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
Photonic simulators are increasingly used to study physical systems for their affluent manipulable degrees of freedom. The advent of photonic chips offers a promising path towards compact and configurable simulators. Thin-film lithium niobate chips are particularly well suited for this purpose due to the high electro-optic coefficient, which allows for the creation of lattices in the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!