In the course of digestions of rat liver nuclei with micrococcal nuclease the size of the nucleosomal DNA is shortened by 50-60 nucleotide pairs from starting lengths of about 200, 400, 600, 800, etc. nucleotide pairs in the monomeric and oligomeric nucleosomes, respectively. Acid soluble DNA material is created relatively slowly as compared to the rate of formation of subnucleosomal material. More DNA with lengths in between the 200, 400, etc. nucleotide pairs of nucleosomal DNA is formed when digestions with micrococcal nuclease are carried out at 0 to 10 degrees C compared to 40 degrees C. With DNAase II, on the other hand, formation of a 200 nucleotide pair pattern is favoured at the low temperatures. Apparently, the accessibility of potential cleavage sites in between and within nucleosomes depends strongly on the conditions of digestion. Possible reasons for this dependence are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC343118PMC
http://dx.doi.org/10.1093/nar/3.10.2633DOI Listing

Publication Analysis

Top Keywords

nucleotide pairs
12
micrococcal nuclease
8
nucleosomal dna
8
lengths 200
8
200 400
8
nuclease digestion
4
digestion nucleosomes
4
nucleosomes course
4
course digestions
4
digestions rat
4

Similar Publications

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

The increasingly widespread application of next-generation sequencing (NGS) in clinical diagnostics and epidemiological research has generated a demand for robust, fast, automated, and user-friendly bioinformatics workflows. To guide the choice of tools for the assembly of full-length viral genomes from NGS datasets, we assessed the performance and applicability of four open-source bioinformatics pipelines (shiver-for which we created a user-friendly Dockerized version, referred to as dshiver; SmaltAlign; viral-ngs; and V-pipe) using both simulated and real-world HIV-1 paired-end short-read datasets and default settings. All four pipelines produced consensus genome assemblies with high quality metrics (genome fraction recovery, mismatch and indel rates, variant calling F1 scores) when the reference sequence used for assembly had high similarity to the analyzed sample.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) has been attributed to health-promoting properties and has received attention from the food industry as an attractive bioactive compound for the development of functional foods. Some lactic acid bacteria (LAB) produce GABA through a glutamate decarboxylase encoded by B and a glutamate/GABA antiporter encoded by C. In this study, we develop a molecular screening method based on a polymerase chain reaction able to detect those genes in different LAB species through the use of novel multispecies primers.

View Article and Find Full Text PDF

Genetic Diversity and Fingerprinting of 231 Mango Germplasm Using Genome SSR Markers.

Int J Mol Sci

December 2024

National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticulture Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.

Mango ( L.) (2n = 40) is an important perennial fruit tree in tropical and subtropical regions. The lack of information on genetic diversity at the molecular level hinders efforts in mango genetic improvement and molecular marker-assisted breeding.

View Article and Find Full Text PDF

We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!