Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.32.774 | DOI Listing |
Nature
January 2025
Department of Physics and Astronomy, Rice University, Houston, TX, USA.
Adv Sci (Weinh)
January 2025
Department of Physics, Chung-Ang University, Seoul, 06974, Republic of Korea.
The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.
View Article and Find Full Text PDFJ Chem Phys
January 2025
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
By using a tight-binding model, first-principles calculations, and ab initio molecular dynamics simulations, we theoretically demonstrate that the C76-Td-assembled two-dimensional (2D) honeycomb lattice is stable at room temperature and is resistant to mechanical deformation. We disclose that each C76-Td mimics a single carbon atom (geometrically and electronically); hence, it plays the role of one supercarbon. This inspires that the 2D material exhibits an exotic hourglass-like fermion at the Fermi level.
View Article and Find Full Text PDFNano Lett
January 2025
Beijing Computational Science Research Center, Beijing 100193, China.
Artificial honeycomb lattices are essential for understanding exotic quantum phenomena arising from the interplay between Dirac physics and electron correlation. This work shows that the top two moiré valence bands in rhombohedral-stacked twisted MoS bilayers (tb-MoS) form a honeycomb lattice with massless Dirac fermions. The hopping and Coulomb interaction parameters are explicitly determined based on large-scale ab initio calculations.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!