Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevc.39.1385DOI Listing

Publication Analysis

Top Keywords

single-particle multiparticle
4
multiparticle analysis
4
analysis nucleus-nucleus
4
nucleus-nucleus collisions
4
collisions 146
4
146 200
4
200 gev/nucleon
4
single-particle
1
analysis
1
nucleus-nucleus
1

Similar Publications

Interaction-Induced Multiparticle Bound States in the Continuum.

Phys Rev Lett

October 2024

Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Article Synopsis
  • Bound states in the continuum (BICs) are localized modes within radiation continuum, first predicted for single particles but now general in many wave systems; their application in many-body quantum physics is still largely unexplored.
  • Researchers predict a new type of multiparticle state in the Bose-Hubbard model, creating a quasi-BIC that behaves differently under various boundary conditions—appearing as a bound pair influenced by a third particle.
  • The study reveals that modulating onsite interactions can realize Thouless pumping of these quasi-BICs, where the overall center of mass shifts while the bound pair moves oppositely in relation to a standing wave.
View Article and Find Full Text PDF

We study the dynamical response functions relevant for electric field induced two-dimensional (2D) coherent nonlinear optical spectroscopy in a Kitaev magnet at finite temperature. We show that these response functions are susceptible to both types of fractional quasiparticles of this quantum spin-liquid, i.e.

View Article and Find Full Text PDF

The multi-scale modeling of lithium-ion battery (LIB) is difficult and necessary due to its complexity. However, it is difficult to capture the aging behavior of batteries, and the coupling mechanism between multiple scales is still incomplete. In this paper, a simplified electrochemical model (SEM) and a kinetic Monte Carlo (KMC)-based solid electrolyte interphase (SEI) film growth model are used to study the multi-scale characteristics of LIBs.

View Article and Find Full Text PDF

Gradient fields can effectively suppress particle tunneling in a lattice and localize the wave function at all energy scales, a phenomenon known as Stark localization. Here, we show that Stark systems can be used as a probe for the precise measurement of gradient fields, particularly in the weak-field regime where most sensors do not operate optimally. In the extended phase, Stark probes achieve super-Heisenberg precision, which is well beyond most of the known quantum sensing schemes.

View Article and Find Full Text PDF

Close encounters of the sticky kind: Brownian motion at absorbing boundaries.

Phys Rev E

June 2023

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA.

Encounter-based models of diffusion provide a probabilistic framework for analyzing the effects of a partially absorbing reactive surface, in which the probability of absorption depends upon the amount of surface-particle contact time. In this paper we develop a class of encounter-based models that deal with absorption at sticky boundaries. Sticky boundaries occur in a diverse range of applications, including cell biology, colloidal physics, finance, and human crowd dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!