Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevc.37.1787DOI Listing

Publication Analysis

Top Keywords

energy dependence
4
dependence mean-field
4
mean-field potential
4
potential neutron
4
neutron scattering
4
scattering 190192os
4
190192os 194196pt
4
energy
1
mean-field
1
potential
1

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Average Time-Delays for the Scattering of O Atoms from O Molecules.

J Chem Theory Comput

January 2025

Laboratoire ICB, UMR-6303 CNRS/uB, Université de Bourgogne, 9 avenue Alain Savary, 21078 Cedex Dijon, France.

We report full quantum-computed average microcanonical, initial state-specific, and canonical cumulative time-delays associated with the O + O scattering, presented as a function of total energy (in relation to an idealized molecular beam experiment) or temperature (for the properties of the gas phase in bulk conditions). We show that these quantities are well-defined and computable, with a temperature-dependent (canonical) time-delay presenting a smooth, monotonic decreasing behavior with temperature, despite an energy-dependent (microcanonical) time-delay of apparent chaotic character. We discuss differences in behavior when considering isotopic variations, O + OO and O + OO, with respect to the reference process O + OO and reveal a greater magnitude of the cumulative time-delay when genuinely reactive events can take place, in the presence of O.

View Article and Find Full Text PDF

Load-Shifting Strategies for Cost-Effective Emission Reductions at Wastewater Facilities.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.

Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.

View Article and Find Full Text PDF

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!