Decay properties of 150Tm and 150Er.

Phys Rev C Nucl Phys

Published: February 1987

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevc.35.620DOI Listing

Publication Analysis

Top Keywords

decay properties
4
properties 150tm
4
150tm 150er
4
decay
1
150tm
1
150er
1

Similar Publications

Fruit preservation materials play an instrumental role in preventing fruit deterioration and extending shelf life. However, existing fresh-keeping materials often prove inadequate in simultaneously achieving antibacterial properties, maintaining freshness, antioxidant effects, good biocompatibility, and prolonged fruit shelf life. Therefore, we present the first preparation of a natural polysaccharide spray hydrogel (Q/O/Zn hydrogel), loaded with chlorogenic acid‑zinc nanoparticles (CA@ZnNPs), utilizing quaternary ammonium insect chitosan (QECS) and oxidized pullulan (OPUL) for the preservation of perishable fruits.

View Article and Find Full Text PDF

Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction.

J Colloid Interface Sci

December 2024

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Electronic address:

Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl).

View Article and Find Full Text PDF

We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.

View Article and Find Full Text PDF

Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.

View Article and Find Full Text PDF

Wignerian symplectic covariance approach to the interaction-time problem.

Sci Rep

December 2024

Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059, Kraków, Poland.

The concept of the symplectic covariance property of the Wigner distribution function and the symplectic invariance of the Wigner-Rényi entropies has been leveraged to estimate the interaction time of the moving quantum state in the presence of an absolutely integrable time-dependent potential. For this study, the considered scattering centre is represented initially by the Gaussian barrier. Two modifications of this potential energy are considered: a sudden change from barrier to barrier and from barrier to well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!