Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevc.33.885DOI Listing

Publication Analysis

Top Keywords

fast slow
4
slow processes
4
processes fragmentation
4
fragmentation 238u
4
238u mev/nucleon
4
mev/nucleon 12c
4
fast
1
processes
1
fragmentation
1
238u
1

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

COVID-19 impacted many men's intimate partner relationships, with distressed and disrupted partnerships consistently featured in commentaries with linkages to mental health challenges. The current study draws from interviews with 23 Canadian-based men, 19-50 years old, who experienced a break-up during COVID-19. Addressing the research question, "What are the connections between masculinities, men's mental health, and intimate partner relationship break-ups during COVID-19?", three thematic findings were derived: (1) Virtually Together and Growing Apart, (2) Mentally Trapped, and Failing Fast and Slow, and (3) Introspections and Moving On.

View Article and Find Full Text PDF

Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges.

Front Physiol

January 2025

Institute of Vegetative Physiology, University of Cologne, Köln, Germany.

Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.

Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.

View Article and Find Full Text PDF

Background: Kidney transplantation (kTx) is by far the most effective method of treating end-stage renal disease, with immunosuppressive therapy being obligatory for all, except identical twins. Despite kTx being the most effective treatment for end-stage renal disease, the patients face significant morbidity. They are often burdened with diabetes, anaemia, lipid disorders, all of which pose heightened risks for cardiovascular disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!